Synthesis of graphene-like carbon from agricultural side stream with magnesiothermic reduction coupled with atmospheric pressure induction annealing

11Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Generally, large-scale production of graphene is currently not commercially viable due to expensive raw materials, complexity and the high-energy consumption of the processes currently used in the production. The use of biomass precursors and energy efficient procedures for carbonization have been proposed to reduce the cost of the graphene materials. However, low-cost graphene production has not been accomplished yet. Herein, we present a sustainable procedure and renewable starting materials to synthesize carbon nanostructures with graphene-like features. First, a SiC/C composite was synthesized from phytoliths and sucrose through magnesiothermic reduction. The phytoliths were obtained from barley husk that is an abundant side stream of agricultural industry. Second, graphene-like structures were achieved by the graphitization of SiC/C composite with high temperature induction annealing at 2400 °C under atmospheric pressure. The formation of graphene-like carbon was initiated by vaporization of silicon from the pre-ceramic SiC/C. Complete transformation of SiC/C to hollow, spherical graphene-like carbon structures and sheets were verified with thermogravimetry, x-ray diffraction, energy dispersive spectroscopy, electron microscopy and Raman spectroscopy. Also, the theoretical thermodynamic consideration of the phase separation of silicon carbide and the role of free carbon in the process has been discussed.

Cite

CITATION STYLE

APA

Lähde, A., Haluska, O., Alatalo, S. M., Sippula, O., Meščeriakovas, A., Lappalainen, R., … Lehto, V. P. (2020). Synthesis of graphene-like carbon from agricultural side stream with magnesiothermic reduction coupled with atmospheric pressure induction annealing. Nano Express, 1(1). https://doi.org/10.1088/2632-959X/ab82e5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free