The cell surface alkaline phosphatase (APase) of the preimplantation mouse embryo has been characterized in situ by inhibition studies and fluorescent histochemistry. The embryonic APase has also been compared in the inhibition studies to the APase expressed on mouse F9 teratocarcinoma cells and, in some instances, to the APase of mouse intestinal epithelial cells. The embryonic APase was active over the pH range of 6.0-10.0, with the optimal pH for full activity in the range of 8.5-10.0. The embryonic APase was remarkably heat stable with significant loss of activity detected only after a 1 h incubation at 90°C. A variety of specific and nonspecific APase inhibitors were applied to embryos to determine the nature of the APase isozymes expressed on these cells. The embryonic APase was totally resistant to levamisole, tetramisole, bromotetramisole, and L-homoarginine. The embryonic APase was inhibited by L-phenylalanine in a concentration-dependent fashion and by sodium arsenate, sodium vandate, ethylenediamine tetraacetic acid, and slightly by 1,10-phenanthroline. The inhibition profile of the mouse embryonic APase, therefore, resembles most closely that reported for human placental APase with respect to heat stability and that reported for mouse intestinal APase with respect ot inhibitor sensitivity.
CITATION STYLE
Lepire, M. L., & Ziomek, C. A. (1989). Preimplantation mouse embryos express a heat-stable alkaline phosphatase. Biology of Reproduction, 41(3), 464–473. https://doi.org/10.1095/biolreprod41.3.464
Mendeley helps you to discover research relevant for your work.