Thioredoxin selectivity for thiol-based redox regulation of target Proteins in Chloroplasts

92Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. Todirectly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bis-phosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network.

Cite

CITATION STYLE

APA

Yoshida, K., Hara, S., & Hisabori, T. (2015). Thioredoxin selectivity for thiol-based redox regulation of target Proteins in Chloroplasts. Journal of Biological Chemistry, 290(23), 14278–14288. https://doi.org/10.1074/jbc.M115.647545

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free