Abstract
Acetylcholine (ACh) plays a permissive role in developmental plasticity of fibers from the lateral geniculate nucleus (LGN) to the primary visual cortex (V1). These fibers remain plastic and express long-term potentiation (LTP) in adult rodents, but it is not known if ACh modulates this form of plasticity in the mature V1. We show that, in anesthetized rats, theta burst stimulation (TBS) of the LGN using 5 or 40 theta cycles produced moderate (∼20%) and stronger (∼40%) potentiation, respectively, of field postsynaptic potentials recorded in the ipsilateral V1. Basal forebrain stimulation (100 Hz) 5 min after TBS enhanced LTP induced by both weak (5 theta cycles) and strong (40 theta cycles) induction protocols. Both effects were reduced by systemic administration of the muscarinic receptor antagonist scopolamine. Basal forebrain stimulation did not enhance LTP when applied 30 min after or 5 min prior to TBS, suggesting that ACh affects early LTP induction mechanisms. Application of the cholinergic agonist carbachol in V1 by means of reverse microdialysis mimicked the effect of basal forebrain stimulation. We conclude that heterosynaptic facilitation of V1 plasticity by ACh extends beyond early postnatal maturation periods and acts to convert weak potentiation into pronounced, long-lasting increases in synaptic strength. © The Author 2006. Published by Oxford University Press. All rights reserved.
Author supplied keywords
Cite
CITATION STYLE
Dringenberg, H. C., Hamze, B., Wilson, A., Speechley, W., & Kuo, M. C. (2007). Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine. Cerebral Cortex, 17(4), 839–848. https://doi.org/10.1093/cercor/bhk038
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.