Nanoscale Ferroelectric Switchable Polarization and Leakage Current Behavior in (Ba0.50Sr0.50)(Ti0.80Sn0.20)O3 Thin Films Prepared Using Chemical Solution Deposition

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nanoscale switchable ferroelectric (Ba0.50Sr0.50)(Ti0.80Sn0.20)O3-BSTS polycrystalline thin films with a perovskite structure were prepared on Pt/TiOx/SiO2/Si substrate by chemical solution deposition. X-ray diffraction (XRD) spectra indicate that a cubic perovskite crystalline structure and Raman spectra revealed that a tetragonal perovskite crystalline structure is present in the thin films. Sr2+ and Sn4+ cosubstituted film exhibited the lowest leakage current density. Piezoresponse Force Microscopy (PFM) technique has been employed to acquire out-of-plane (OPP) piezoresponse images and local piezoelectric hysteresis loop in polycrystalline BSTS films. PFM phase and amplitude images reveal nanoscale ferroelectric switching behavior at room temperature. Square patterns with dark and bright contrasts were written by local poling and reversible nature of the piezoresponse behavior was established. Local piezoelectric butterfly amplitude and phase hysteresis loops display ferroelectric nature at nanoscale level. The significance of this paper is to present ferroelectric/piezoelectric nature in present BSTS films at nanoscale level and corroborating ferroelectric behavior by utilizing Raman spectroscopy. Thus, further optimizing physical and electrical properties, BSTS films might be useful for practical applications which include nonvolatile ferroelectric memories, data-storage media, piezoelectric actuators, and electric energy storage capacitors.

Cite

CITATION STYLE

APA

Puli, V. S., Adireddy, S., Pradhan, D. K., Katiyar, R. S., & Chrisey, D. B. (2015). Nanoscale Ferroelectric Switchable Polarization and Leakage Current Behavior in (Ba0.50Sr0.50)(Ti0.80Sn0.20)O3 Thin Films Prepared Using Chemical Solution Deposition. Journal of Nanomaterials, 2015. https://doi.org/10.1155/2015/340616

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free