Ensemble Learning Regression for Estimating Unconfined Compressive Strength of Cemented Paste Backfill

75Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Though machine learning (ML) approaches have proliferated in the mechanical properties prediction of cemented paste backfill (CPB), their applications have not reached the peak potential due to the lack of more robust techniques. In the present contribution, the state-of-The-Art ensemble learning method was employed for improved estimation of the unconfined compressive strength (UCS) of CPB. 126 UCS tests were conducted on two new tailings to provide an enlarged dataset. Tree-based ML approaches, namely, regression tree (RT), random forest (RF), and gradient boosting regression tree (GBRT), were chosen to be individual ML approaches. The ensemble learning framework was used to combine the optimum individual regressors by means of GBRT. 5-fold cross-validation was used as the validation method and the performance was evaluated using correlation coefficient ( {R} ). Hyper-parameters tuning was conducted using particle swarm optimization (PSO). The results show that the best training set size was 70%. PSO was robust in the hyper-parameters tuning since the {R} value between experimental and predicted UCS on the training set was progressively increased. The ensemble learning can be used to improve the UCS prediction of CPB. The R values between experimental and predicted UCS obtained by RT, RF, GBRT, the ensemble GBRT regressors were 0.9442, 0.9507, 0.9832, and 0.9837, respectively. The method presented in this study extends recent efforts for UCS prediction of CPB and can significantly accelerate the CPB design.

Cite

CITATION STYLE

APA

Lu, X., Zhou, W., Ding, X., Shi, X., Luan, B., & Li, M. (2019). Ensemble Learning Regression for Estimating Unconfined Compressive Strength of Cemented Paste Backfill. IEEE Access, 7, 72125–72133. https://doi.org/10.1109/ACCESS.2019.2918177

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free