Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity

54Citations
Citations of this article
115Readers
Mendeley users who have this article in their library.

Abstract

Spike timing-dependent synaptic plasticity (STDP) plays an important role in neural development and information processing in the brain; however, the mechanism by which spike timing information is encoded into STDP remains unclear. Here, we show that a novel allosteric kinetics of NMDA receptors (NMDARs) is required for STDP. We developed a detailed biophysical model of STDP and found that the model required spike timing-dependent distinct suppression of NMDARs by Ca2+-calmodulin. This led us to predict an allosteric kinetics of NMDARs: a slow and rapid suppression of NMDARs by Ca 2+-calmodulin with prespiking → postspiking and postspiking → prespiking, respectively. We found that the allosteric kinetics, but not the conventional kinetics, is consistent with specific features of amplitudes and peak time of NMDAR-mediated EPSPs in experiments. We found that the allosteric kinetics of NMDARs was also valid for synaptic plasticity induced by more complex spike trains in layer II/III of visual cortex. We extracted an essential synaptic learning rule by reduction of the allosteric STDP model and found that spike timing-dependent bidirectional role of postspiking in synaptic modification, which depends on the allosteric kinetics, is the essential principle in STDP. Thus, we propose a simple hypothesis of the allosteric kinetics of NMDARs that can coherently explain critical features of spike timing-dependent NMDAR-mediated EPSPs and synaptic plasticity. Copyright © 2008 Society for Neuroscience.

Cite

CITATION STYLE

APA

Urakubo, H., Honda, M., Froemke, R. C., & Kuroda, S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. Journal of Neuroscience, 28(13), 3310–3323. https://doi.org/10.1523/JNEUROSCI.0303-08.2008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free