Gating of TRP channels: A voltage connection?

243Citations
Citations of this article
252Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

TRP channels represent the main pathways for cation influx in non-excitable cells. Although TRP channels were for a long time considered to be voltage independent, several TRP channels now appear to be weakly voltage dependent with an activation curve extending mainly into the non-physiological positive voltage range. In connection with this voltage dependence, there is now abundant evidence that physical stimuli, such as temperature (TRPV1, TRPM8, TRPV3), or the binding of various ligands (TRPV1, TRPV3, TRPM8, TRPM4), shift this voltage dependence towards physiologically relevant potentials, a mechanism that may represent the main functional hallmark of these TRP channels. This review discusses some features of voltage-dependent gating of TRPV1, TRPM4 and TRPM8. A thermodynamic principle is elaborated, which predicts that the small gating charge of TRP channels is a crucial factor for the large voltage shifts induced by various stimuli. Some structural considerations will be given indicating that, although the voltage sensor is not yet known, the C-terminus may substantially change the voltage dependence of these channels. © The Physiological Society 2005.

Cite

CITATION STYLE

APA

Nilius, B., Talavera, K., Owsianik, G., Prenen, J., Droogmans, G., & Voets, T. (2005). Gating of TRP channels: A voltage connection? Journal of Physiology, 567(1), 35–44. https://doi.org/10.1113/jphysiol.2005.088377

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free