Optimal control and treatment of infectious diseases. The case of huge treatment costs

22Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

The representation of the cost of a therapy is a key element in the formulation of the optimal control problem for the treatment of infectious diseases. The cost of the treatment is usually modeled by a function of the price and quantity of drugs administered; this function should be the cost as subjectively perceived by the decision-maker. Nevertheless, in literature, the choice of the cost function is often simply done to make the problem more tractable. A specific problem is also given by very expensive therapies in the presence of a very high number of patients to be treated. Firstly, we investigate the optimal treatment of infectious diseases in the simplest case of a two-class population (susceptible and infectious people) and compare the results coming from five different shapes of cost functions. Finally, a model for the treatment of the HCV virus using the blowing-up cost function is investigated. Some numerical simulations are also given.

Cite

CITATION STYLE

APA

Di Liddo, A. (2016). Optimal control and treatment of infectious diseases. The case of huge treatment costs. Mathematics, 4(2). https://doi.org/10.3390/math4020021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free