Abstract
With the rapid growth of event-based social networks, the demand of event recommendation becomes increasingly important. Different from classic recommendation problems, event recommendation generally faces the problems of heterogenous online and offline social relationships among users and implicit feedback data. In this paper, we present a baysian probability model that can fully unleash the power of heterogenous social relations and efficiently tackle with implicit feedback characteristic for event recommendation. Experimental results on several real-world datasets demonstrate the utility of our method.
Cite
CITATION STYLE
Qiao, Z., Zhang, P., Zhou, C., Cao, Y., Guo, L., & Zhang, Y. (2014). Event recommendation in event-based social networks. In Proceedings of the National Conference on Artificial Intelligence (Vol. 4, pp. 3130–3131). AI Access Foundation. https://doi.org/10.1609/aaai.v28i1.9095
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.