Indonesia memiliki berbagai warisan budaya tak benda salah satunya adalah kain songket. Kain songket memiliki banyak ragam sesuai ciri khas dari setiap daerah, khususnya songket Palembang. Kain songket Palembang memiliki keistimewaan dibandingkan songket dari daerah lain. Selain memiliki nilai sejarah, kain songket Palembang memiliki motif, mutu dan tingkat kerumitan yang tinggi dalam proses pembuatannya. Pada penelitian ini digunakan metode Random Forest untuk klasifikasi citra motif kain songket Palembang dengan mengunakan ekstraksi fitur Scale-Invariant Feature Transform (SIFT). Proses pembentukan fitur dengan metode SIFT melalui tahap scale space extrema detection, keypoint localization, orientation assignment, dan keypoint descriptor. Fitur yang dihasilkan digunakan untuk klasifikasi Random Forest. Citra motif songket yang digunakan pada penelitian ini sebanyak 115 citra dari setiap jenis motif, yaitu Bunga cina, Cantik Manis, dan Pulir. Pemilihan citra diambil dari 5 warna setiap motif songket Palembang. Data latih dan data uji yang digunakan masing-masing sebanyak 100 dan 15 untuk setiap motif Songket Palembang. Hasil pengujian menunjukkan bahwa metode SIFT dan Random Forest untuk klasifikasi citra motif kain Songket Palembang dapat memberikan akurasi yang cukup baik, dimana metode SIFT dan Random Forest mampu menghasilkan rata-rata overall accuracy 92,98%, per class accuracy 94,07%, presision 92,98%, dan recall 89,74%.
CITATION STYLE
Devella, S., Yohannes, Y., & Rahmawati, F. N. (2020). Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 7(2), 310–320. https://doi.org/10.35957/jatisi.v7i2.289
Mendeley helps you to discover research relevant for your work.