Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction

200Citations
Citations of this article
211Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The stability and formation of a perovskite structure is dictated by the Goldschmidt tolerance factor as a general geometric guideline. The tolerance factor has limited the choice of cations (A) in 3D lead iodide perovskites (APbI3), an intriguing class of semiconductors for high-performance photovoltaics and optoelectronics. Here, we show the tolerance factor requirement is relaxed in 2D Ruddlesden-Popper (RP) perovskites, enabling the incorporation of a variety of larger cations beyond the methylammonium (MA), formamidinium, and cesium ions in the lead iodide perovskite cages for the first time. This is unequivocally confirmed with the single-crystal X-ray structure of newly synthesized guanidinium (GA)-based (n-C6H13NH3)2(GA)Pb2I7, which exhibits significantly enlarged and distorted perovskite cage containing sterically constrained GA cation. Structural comparison with (n-C6H13NH3)2(MA)Pb2I7 reveals that the structural stabilization originates from the mitigation of strain accumulation and self-adjustable strain-balancing in 2D RP structures. Furthermore, spectroscopic studies show a large A cation significantly influences carrier dynamics and exciton-phonon interactions through modulating the inorganic sublattice. These results enrich the diverse families of perovskite materials, provide new insights into the mechanistic role of A-site cations on their physical properties, and have implications to solar device studies using engineered perovskite thin films incorporating such large organic cations.

Cite

CITATION STYLE

APA

Fu, Y., Hautzinger, M. P., Luo, Z., Wang, F., Pan, D., Aristov, M. M., … Jin, S. (2019). Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction. ACS Central Science, 5(8), 1377–1386. https://doi.org/10.1021/acscentsci.9b00367

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free