A method for predicting hemolytic potency of chemically modified peptides from its structure

36Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

In the present study, a systematic effort has been made to predict the hemolytic potency of chemically modified peptides. All models have been trained, tested, and evaluated on a dataset that contains 583 modified hemolytic peptides and a balanced number of non-hemolytic peptides. Machine learning techniques have been used to build the classification models using an immense range of peptide features that include 2D, 3D descriptors, fingerprints, atom, and diatom compositions. Random Forest based model developed using fingerprints as an input feature achieved maximum accuracy of 78.33% with AUC of 0.86 on the main dataset and accuracy of 78.29% with AUC of 0.85 on the validation dataset. Models developed in this study have been incorporated in a web server “HemoPImod” to facilitate the scientific community (http://webs.iiitd.edu.in/raghava/ hemopimod/).

Cite

CITATION STYLE

APA

Kumar, V., Kumar, R., Agrawal, P., Patiyal, S., & Raghava, G. P. S. (2020). A method for predicting hemolytic potency of chemically modified peptides from its structure. Frontiers in Pharmacology, 11, 1–8. https://doi.org/10.3389/fphar.2020.00054

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free