Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin

128Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. β-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that β-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu779 in extracellular loop IIS1-S2 and both Glu837 and Leu840 in extracellular loop IIS3-S4 reduce the binding affinity of β-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect β-scorpion toxin binding but alter voltage dependence of activation and enhance β-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Cestèle, S., Yarov-Yarovoy, V., Qu, Y., Sampieri, F., Scheuer, T., & Catterall, W. A. (2006). Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin. Journal of Biological Chemistry, 281(30), 21332–21344. https://doi.org/10.1074/jbc.M603814200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free