A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic-organic self-assembly at the interface of an organic scaffold such as polyurethane (PU) foam. Hierarchically porous carbonaceous monoliths with cubic (Im3̄m) or hexagonal (p6mm) mesostructure were prepared through evaporation induced self-assembly of the mesostructure on the three-dimensional (3-D) interconnecting struts of the PU foam scaffold. The preparation was carried out by using phenol/formaldehyde resol as a carbon precursor, triblock copolymer F127 as a template for the mesostructure and PU foam as a sacrificial monolithic scaffold. Their hierarchical pore system was macroscopically fabricated with cable-like mesostructured carbonaceous struts. The carbonaceous monoliths exhibit macropores of diameter 100-450 μm, adjustable uniform mesopores (3.8-7.5 nm), high surface areas (200-870 m2/g), and large pore volumes (0.17-0.58) cm3/g. Compared with the corresponding evaporation induced self-assembly (EISA) process on a planar substrate, this facile process is a time-saving, labor-saving, space-saving, and highly efficient pathway for mass production of ordered mesoporous materials. © 2009 Tsinghua University Press and Springer-Verlag.
CITATION STYLE
Xue, C., Tu, B., & Zhao, D. (2009). Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Research, 2(3), 242–253. https://doi.org/10.1007/s12274-009-9022-y
Mendeley helps you to discover research relevant for your work.