Coordinated control of cell Ca2+ loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca2+ current

109Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The aim of this study was to investigate how sarcoplasmic reticulum (SR) Ca2+ content and systolic Ca2+ are controlled when Ca2+ entry into the cell is varied. Experiments were performed on voltage-clamped rat and ferret ventricular myocytes loaded with fluo-3 to measure intracellular Ca2+ concentration ([Ca2+]i). Increasing external Ca2+ concentration ([Ca2+]o) from 1 to 2 mmol/L increased the amplitude of the systolic Ca2+ transient with no effect on SR Ca2+ content. This constancy of SR content is shown to result because the larger Ca2+ transient activates a larger Ca2+ efflux from the cell that balances the increased influx. Decreasing [Ca2+]o to 0.2 mmol/L decreased systolic Ca2+ but produced a small increase of SR Ca2+ content. This increase of SR Ca2+ content is due to a decreased release of Ca2+ from the SR resulting in decreased loss of Ca2+ from the cell. An increase of [Ca2+]o has two effects: (1) increasing the fraction of SR Ca2+ content, which is released on depolarization and (2) increasing Ca2+ entry into the cell. The results of this study show that the combination of these effects results in rapid changes in the amplitude of the systolic Ca2+ transient. In support of this, the changes of amplitude of the transient occur more quickly following changes of [Ca2+]o than following refilling of the SR after depletion with caffeine. We conclude that the coordinated control of increased Ca2+ entry and greater fractional release of Ca2+ is an important factor in regulating excitation-contraction coupling.

Author supplied keywords

Cite

CITATION STYLE

APA

Trafford, A. W., Díaz, M. E., & Eisner, D. A. (2001). Coordinated control of cell Ca2+ loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca2+ current. Circulation Research, 88(2), 195–201. https://doi.org/10.1161/01.RES.88.2.195

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free