Abstract
Several nuclear receptor (NR) superfamily members are known to be the molecular target of either the small ubiquitin-related modifier (SUMO) or ubiquitin-signaling pathways. However, little is currently known regarding how these two post-translational modifications interact to control NR biology. We show that SUMO and ubiquitin circuitry coordinately modifies the pregnane X receptor (PXR, NR1I2) to play a key role in regulating PXR protein stability, transactivation capacity, and transcriptional repression. The SUMOylation and ubiquitylation of PXR is increased in a ligand- and tumor necrosis factor alpha-dependent manner in hepatocytes. The SUMO-E3 ligase enzymes protein inhibitor of activated signal transducer and activator of transcription-1 (STAT1) STAT-1 (PIAS1) and protein inhibitor of activated STAT Y (PIASy) drive high levels of PXR SUMOylation. Expression of protein inhibitor of activated stat 1 selectively increases SUMO(3) ylation as well as PXR-mediated induction of cytochrome P450, family 3, subfamily A and the xenobiotic response. The PIASy-mediated SUMO(1) ylation imparts a transcriptionally repressive function by ameliorating interaction of PXR with coac-tivator protein peroxisome proliferator-activated receptor gamma coactivator-1-alpha. The SUMO modification of PXR is effectively antagonized by the SUMO protease sentrin protease (SENP) 2, whereas SENP3 and SENP6 proteases are highly active in the removal of SUMO2/3 chains. The PIASy-mediated SUMO(1) ylation of PXR inhibits ubiquitin-mediated degradation of this important liver-enriched NR by the 26S proteasome. Our data reveal a working model that delineates the interactive role that these two post-translational modifications play in reconciling PXR-mediated gene activation of the xenobiotic response versus transcriptional repression of the proin-flammatory response in hepatocytes. Taken together, our data reveal that the SUMOylation and ubiquitylation of the PXR interface in a fundamental manner directs its biologic function in the liver in response to xenobiotic or inflammatory stress.
Cite
CITATION STYLE
Cui, W., Sun, M., Galeva, N., Williams, T. D., Azuma, Y., & Staudinger, J. L. (2015). SUMOylation and ubiquitylation circuitry controls pregnane X receptor biology in hepatocytes. Drug Metabolism and Disposition, 43(9), 1316–1325. https://doi.org/10.1124/dmd.115.065201
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.