Rotation periods are increasingly being used to derive ages for cool single field stars. Such ages are based on an empirical understanding of how cool stars spin down, acquired by constructing color-period diagrams (CPDs) for a series of open clusters. Our main aims here are to construct a CPD for M 48, to compare this with other clusters of similar age to check for consistency, and to derive a rotational age for M 48 using gyrochronology. We monitored M 48 photometrically for over 2 months with AIP's STELLA I 1.2 m telescope and the WiFSIP 4K imager in Tenerife. Light curves with 3 mmag precision for bright (V 14 mag) stars were produced and then analysed to provide rotation periods. A cluster CPD has then been constructed. We report 62 rotation periods for cool stars in M 48. The CPD displays a clear slow/I-sequence of rotating stars, similar to those seen in the 625 Myr-old Hyades and 590 Myr-old Praesepe clusters, and below both, confirming that M 48 is younger. A similar comparison with the 250 Myr-old M 34 cluster shows that M 48 is older and does not possess any fast/C-sequence G or early K stars like those in M 34, although relatively fast rotators do seem to be present among the late-K and M stars. A more detailed comparison of the CPD with rotational evolution models shows that the cluster stars have a mean age of 450 Myr, and its (rotating) stars can be individually dated to ± 117 Myr (26%). Much of this uncertainty stems from intrinsic astrophysical spread in initial periods, and almost all stars are consistent with a single age of 450 Myr. The gyro-age of M 48 as a whole is 450 ± 50 Myr, in agreement with the previously determined isochrone age of 400 ± 100 Myr.
CITATION STYLE
Barnes, S. A., Weingrill, J., Granzer, T., Spada, F., & Strassmeier, K. G. (2015, November 1). A color-period diagram for the open cluster M 48 (NGC 2548), and its rotational age. Astronomy and Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201526129
Mendeley helps you to discover research relevant for your work.