The measured vertical peak ground acceleration was larger than the horizontal peak ground acceleration. It is essential to consider the vertical seismic effect in seismic fragility evaluation of large-space underground structures. In this research, an approach is presented to construct fragility curves of large-space underground structures considering the vertical seismic effect. In seismic capacity, the soil-underground structure pushover analysis method which considers the vertical seismic loading is used to obtain the capacity curve of central columns. The thresholds of performance levels are quantified through a load-drift backbone curve model. In seismic demand, it is evaluated through incremental dynamic analysis (IDA) method under the excitation of horizontal and vertical acceleration, and the soil-structure-interaction and ground motion characteristics are also considered. The IDA results are compared in terms of peak ground acceleration and peak ground velocity. To construct the fragility curves, the evolutions of performance index versus the increasing earthquake intensity are performed, considering related uncertainties. The result indicates that if we ignore the vertical seismic effect to the fragility assessment of large-space underground structures, the exceedance probabilities of damage of large-space underground structures will be underestimated, which will result in an unfavorable assessment result.
CITATION STYLE
He, Z., & Chen, Q. (2019). Vertical Seismic Effect on the Seismic Fragility of Large-Space Underground Structures. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/9650294
Mendeley helps you to discover research relevant for your work.