Exploring automatic covid-19 diagnosis via voice and symptoms from crowdsourced data

83Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The development of fast and accurate screening tools, which could facilitate testing and prevent more costly clinical tests, is key to the current pandemic of COVID-19. In this context, some initial work shows promise in detecting diagnostic signals of COVID-19 from audio sounds. In this paper, we propose a voice-based framework to automatically detect individuals who have tested positive for COVID-19. We evaluate the performance of the proposed framework on a subset of data crowdsourced from our app, containing 828 samples from 343 participants. By combining voice signals and reported symptoms, an AUC of 0.79 has been attained, with a sensitivity of 0.68 and a specificity of 0.82. We hope that this study opens the door to rapid, low-cost, and convenient pre-screening tools to automatically detect the disease.

Cite

CITATION STYLE

APA

Han, J., Brown, C., Chauhan, J., Grammenos, A., Hasthanasombat, A., Spathis, D., … Mascolo, C. (2021). Exploring automatic covid-19 diagnosis via voice and symptoms from crowdsourced data. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings (Vol. 2021-June, pp. 8328–8332). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICASSP39728.2021.9414576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free