This paper targets the SHL recognition challenge, which focuses on the location-independent and user-independent activity recognition using smartphone sensors. To address this long-range temporal problem with periodic nature, we propose a new approach (team IndRNN), an Independently Recurrent Neural Network (IndRNN) based long-term temporal activity recognition with spatial and frequency domain features. The data is first segmented into one second sliding windows, then temporal and frequency domain features are extracted as short-term temporal features. A deep IndRNN model is used to predict the unknown test dataset location. Under the predicted location, a deep IndRNN model is further used to classify the 8 activities with best performed features. Finally, transfer learning and model fusion are used to improve the result under the user-independence case. The proposed method achieves 86.94% accuracy on the validation set at the predicted location.
CITATION STYLE
Zhao, B., Li, S., & Gao, Y. (2020). IndRNN based long-term temporal recognition in the spatial and frequency domain. In UbiComp/ISWC 2020 Adjunct - Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers (pp. 368–372). Association for Computing Machinery. https://doi.org/10.1145/3410530.3414355
Mendeley helps you to discover research relevant for your work.