Eggshell membrane (ESM), a plentiful biological waste, consists of collagen-like proteins and glycosaminoglycans (GAGs) such as hyaluronic acid (HA). Here we used a keratinase (oeMtaker)-mediated system to decompose ESM. The best reaction condition was established by incubating the solution containing oeMtaker, sodium sulfite, and ESM with a weight ratio of 1:120:600. ESM enzymatic hydrolysate (ESM-EH) showed a high proportion of essential amino acids and type X collagen peptides with 963–2259 Da molecular weights. The amounts of GAGs and sulfated GAGs in ESM-EH were quantified as 6.4% and 0.7%, respectively. The precipitated polysaccharides with an average molecular weight of 1300–1700 kDa showed an immunomodulatory activity by stimulating pro-inflammatory cytokines (IL-6 and TNF-α) production. In addition, a microorganism-based system was established to hydrolyze ESM by Meiothermus taiwanensis WR-220. The amounts of GAGs and sulfated GAGs in the system were quantified as 0.9% and 0.1%, respectively. Based on our pre-pilot tests, the system shows great promise in developing into a low-cost and high-performance process. These results indicate that the keratinase-mediated system could hydrolyze ESM more efficiently and produce more bioactive substances than ever for therapeutical applications and dietary supplements.
CITATION STYLE
Lien, Y. C., Lai, S. J., Lin, C. Y., Wong, K. P., Chang, M. S., & Wu, S. H. (2022). High-efficiency decomposition of eggshell membrane by a keratinase from Meiothermus taiwanensis. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-18474-4
Mendeley helps you to discover research relevant for your work.