The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species

26Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Mycobacteria have developed a number of pathways that provide partial protection against both reactive oxygen species (ROS) and reactive nitrogen species (RNS). We recently identified a locus in Mycobacterium marinum, mel2, that plays a role during infection of macrophages. The molecular mechanism of mel2 action is not well understood. Results. To better understand the role of the M. marinum mel2 locus, we examined these genes for conserved motifs in silico. Striking similarities were observed between the mel2 locus and loci that encode bioluminescence in other bacterial species. Since bioluminescence systems can play a role in resistance to oxidative stress, we postulated that the mel2 locus might be important for mycobacterial resistance to ROS and RNS. We found that an M. marinum mutant in the first gene in this putative operon, melF, confers increased susceptibility to both ROS and RNS. This mutant is more susceptible to ROS and RNS together than either reactive species alone. Conclusion. These observations support a role for the M. marinum mel2 locus in resistance to oxidative stress and provide additional evidence that bioluminescence systems may have evolved from oxidative defense mechanisms. © 2007 Subbian et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Subbian, S., Mehta, P. K., Cirillo, S. L. G., & Cirillo, J. D. (2007). The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species. BMC Microbiology, 7. https://doi.org/10.1186/1471-2180-7-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free