PURPOSE: Histone deacetylase inhibitors (HDIs) are emerging as potentially useful components in anticancer therapy. In this study, we tried to confirm the radiosensitizing effect of trichostatin A (TSA) on a panel of human carcinoma cell lines and elucidate its mechanism of interaction. MATERIALS AND METHODS: A549, HeLa and Caski cells were exposed to TSA for 18 hr prior to irradiation, and the cell survival then measured using a clonogenic assay. Western blot and flow cytometric analyses, for histone acetylation, and cell cycle and apoptosis, respectively, were also performed. RESULTS: TSA increased the acetylation of histone H3. The pretreatment of TSA consistently radiosensitized all three cell lines. The SF2 (surviving fraction at 2 Gy) of TSA-treated cells was significantly lower than that of mock treated cells. The SER (sensitizer enhancement ratio) increased in all 3 cell lines, in concentration dependent manners. The TSA treated cells showed abrogation of radiation-induced G2/M arrest, in a concentration dependent manner. CONCLUSION: The pretreatment of TSA enhanced the radiosensitivity of a panel of human carcinoma cells, which was attributed, in part, to the abrogation of radiation-induced G2/M arrest.
CITATION STYLE
Kim, I. A., Kim, J. H., Shin, J. H., Kim, I. H., Kim, J. S., Wu, H.-G., … Park, C. I. (2005). A Histone Deacetylase Inhibitor, Trichostatin A, Enhances Radiosensitivity by Abrogating G2/M Arrest in Human Carcinoma Cells. Cancer Research and Treatment, 37(2), 122. https://doi.org/10.4143/crt.2005.37.2.122
Mendeley helps you to discover research relevant for your work.