Effects of anions on the underpotential deposition behavior of Cu on polycrystalline Pt

5Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The process of Cu underpotential deposition (UPD) on polycrystalline Pt (pc Pt) has been investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques using (bi)sulfate and perchlorate (with/without the addition of a small amount of NaCl) as supporting electrolytes, respectively. The results showed that the adsorption capacity of the anions influences both the reversibility and charge transfer resistance (Rct) of Cu UPD reactions on pc Pt. With a negative shift of the applied potential, Rct of the (bi)sulfate system decreases monotonously, whereas Rct of the perchlorate system (with/without Cl- ions) decreases at first and then increases. Cu UPD on pc Pt follows Langmuir-type adsorption and two-dimensional nucleation/growth mechanisms. The specific adsorption anions ((bi)sulfate and chloride ions) can not only enhance the Cu UPD process by decreasing Rct, but also favor instantaneous 2D nucleation and subsequent grain growth. Finally, the possible deposition mechanisms of the Cu UPD process in the presence of specific adsorption anions were proposed.

Cite

CITATION STYLE

APA

Liu, J., Xu, Z., Zhu, B., Du, X., Yang, Y., Yi, C., … Li, J. (2018). Effects of anions on the underpotential deposition behavior of Cu on polycrystalline Pt. RSC Advances, 8(34), 19103–19115. https://doi.org/10.1039/c8ra00921j

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free