A novel constraint handling approach for the optimal reactive power dispatch problem

53Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

This paper presents an alternative constraint handling approach within a specialized genetic algorithm (SGA) for the optimal reactive power dispatch (ORPD) problem. The ORPD is formulated as a nonlinear single-objective optimization problem aiming at minimizing power losses while keeping network constraints. The proposed constraint handling approach is based on a product of sub-functions that represents permissible limits on system variables and that includes a specific goal on power loss reduction. The main advantage of this approach is the fact that it allows a straightforward verification of both feasibility and optimality. The SGA is examined and tested with the recommended constraint handling approach and the traditional penalization of deviations from feasible solutions. Several tests are run in the IEEE 30, 57, 118 and 300 bus test power systems. The results obtained with the proposed approach are compared to those offered by other metaheuristic techniques reported in the specialized literature. Simulation results indicate that the proposed genetic algorithm with the alternative constraint handling approach yields superior solutions when compared to other recently reported techniques.

Cite

CITATION STYLE

APA

Villa-Acevedo, W. M., López-Lezama, J. M., & Valencia-Velásquez, J. A. (2018). A novel constraint handling approach for the optimal reactive power dispatch problem. Energies, 11(9). https://doi.org/10.3390/en11092352

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free