Shallow shotgun sequencing reduces technical variation in microbiome analysis

33Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The microbiome is known to play a role in many human diseases, but identifying key microbes and their functions generally requires large studies due to the vast number of species and genes, and the high levels of intra-individual and inter-individual variation. 16S amplicon sequencing of the rRNA gene is commonly used for large studies due to its comparatively low sequencing cost, but it has poor taxonomic and functional resolution. Deep shotgun sequencing is a more accurate and comprehensive alternative for small studies, but can be cost-prohibitive for biomarker discovery in large populations. Shallow or moderate-depth shotgun metagenomics may serve as a viable alternative to 16S sequencing for large-scale and/or dense longitudinal studies, but only if resolution and reproducibility are comparable. Here we applied both 16S and shallow shotgun stool microbiome sequencing to a cohort of 5 subjects sampled twice daily and weekly, with technical replication at the DNA extraction and the library preparation/sequencing steps, for a total of 80 16S samples and 80 shallow shotgun sequencing samples. We found that shallow shotgun sequencing produced lower technical variation and higher taxonomic resolution than 16S sequencing, at a much lower cost than deep shotgun sequencing. These findings suggest that shallow shotgun sequencing provides a more specific and more reproducible alternative to 16S sequencing for large-scale microbiome studies where costs prohibit deep shotgun sequencing and where bacterial species are expected to have good coverage in whole-genome reference databases.

Cite

CITATION STYLE

APA

La Reau, A. J., Strom, N. B., Filvaroff, E., Mavrommatis, K., Ward, T. L., & Knights, D. (2023). Shallow shotgun sequencing reduces technical variation in microbiome analysis. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-33489-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free