Abstract
1. The effects of external H-7, a potent protein kinase inhibitor, on the responses mediated by γ-aminobutyric acid A type (GAGA(A))-, nicotinic acetylcholine (nicotinic ACh)-, ionotropic 5-hydroxytryptamine (5-HT3)-, adenosine 5'-triphosphate (ATP)-, N-methyl-D-aspartate (NMDA)- and kainate (KA)-receptors were studied in freshly dissociated rat dorsal root ganglion neurone by use of whole cell patch-clamp technique. 2. External H-7 (1-1000 μM) produced a reversible, dose-dependent inhibition of whole cell currents activated by GABA, ACh and 5-HT. 3. Whole-cell currents evoked by ATP, 2-methylthio-ATP, NMDA and KA were sensitive to external H-7. 4. External H-7 shifted the dose-response curve of GABA-activated currents downward without changing the EC50 significantly (from 15.0 ± 4.0 μM to 18.0 ± 5.0 μM). The maximum response to GABA was depressed by 34.0 ± 5.3%. This inhibitory action of H-7 was voltage-independent. 5. Intracellular application of H-7 (20 μM), cyclic AMP (1 mM) and BAPTA (10 mM) could not reverse the H-7 inhibition of GABA-activated currents. 6. The results suggest that external H-7 selectively and allosterically modulates the functions of GABA(A)-, nicotine ACh- and 5-HT3 receptors via a common conserved site in the external domain of these receptors.
Author supplied keywords
Cite
CITATION STYLE
Hu, H. Z., & Li, Z. W. (1997). Modulation of nicotinic ACh-, GABA(A)- and 5-HT3-receptor functions by external H-7, a protein kinase inhibitor, in rat sensory neurones. British Journal of Pharmacology, 122(6), 1195–1201. https://doi.org/10.1038/sj.bjp.0701462
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.