Abstract
The Global Positioning System (GPS) performance at high latitudes can be severely affected by the ionospheric scintillation due to the presence of small-scale time-varying electron density irregularities. In this paper, an improved analogous phase scintillation index derived using the wavelet-transform-based filtering technique is presented to represent the effects of scintillation regionally at European high latitudes. The improved analogous phase index is then compared with the original analogous phase index and the phase scintillation index for performance comparison using 1 year of data from Trondheim, Norway (63.41°N, 10.4°E). This index provides samples at a 1 min rate using raw total electron content (TEC) data at 1 Hz for the prediction of phase scintillation compared to the scintillation monitoring receivers (such as NovAtel Global Navigation Satellite Systems Ionospheric Scintillation and TEC Monitor receivers) which operate at 50 Hz rate and are thus rather computationally intensive. The estimation of phase scintillation effects using high sample rate data makes the improved analogous phase index a suitable candidate which can be used in regional geodetic dual-frequency-based GPS receivers to efficiently update the tracking loop parameters based on tracking jitter variance. Key Points Wavelet-based improved analogous phase scintillation index Scintillation determination based on rate of change of TEC Determining phase scintillation using raw TEC data at 1 Hz.
Author supplied keywords
Cite
CITATION STYLE
Ahmed, A., Tiwari, R., Strangeways, H. J., Dlay, S., & Johnsen, M. G. (2015). Wavelet-based analogous phase scintillation index for high latitudes. Space Weather, 13(8), 503–520. https://doi.org/10.1002/2015SW001183
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.