Abstract
During apoptosis, hundreds of proteins are cleaved by caspases, most of them by the executioner caspase-3. However, caspase-7, which shares the same substrate primary sequence preference as caspase-3, is better at cleaving poly(ADP ribose) polymerase 1 (PARP) and Hsp90 cochaperone p23, despite a lower intrinsic activity. Here, we identified key lysine residues (K 38KKK) within the N-terminal domain of caspase-7 as critical elements for the efficient proteolysis of these two substrates. Caspase-7's N-terminal domain binds PARP and improves its cleavage by a chimeric caspase-3 by ∼30-fold. Cellular expression of caspase-7 lacking the critical lysine residues resulted in less-efficient PARP and p23 cleavage compared with cells expressing the wild-type peptidase. We further showed, using a series of caspase chimeras, the positioning of p23 on the enzyme providing us with a mechanistic insight into the binding of the exosite. In summary, we have uncovered a role for the N-terminal domain (NTD) and the N-terminal peptide of caspase-7 in promoting key substrate proteolysis.
Author supplied keywords
Cite
CITATION STYLE
Boucher, D., Blais, V., & Denault, J. B. (2012). Caspase-7 uses an exosite to promote poly(ADP ribose) polymerase 1 proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5669–5674. https://doi.org/10.1073/pnas.1200934109
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.