Quantitative prediction of the effect of genetic variation using hidden Markov models

13Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: With the development of sequencing technologies, more and more sequence variants are available for investigation. Different classes of variants in the human genome have been identified, including single nucleotide substitutions, insertion and deletion, and large structural variations such as duplications and deletions. Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is known about their effects on humans. The absence of understanding is largely due to the lack of both biological data and computational resources.Results: This paper presents a new indel functional prediction method HMMvar based on HMM profiles, which capture the conservation information in sequences. The results demonstrate that a scoring strategy based on HMM profiles can achieve good performance in identifying deleterious or neutral variants for different data sets, and can predict the protein functional effects of both single and multiple mutations.Conclusions: This paper proposed a quantitative prediction method, HMMvar, to predict the effect of genetic variation using hidden Markov models. The HMM based pipeline program implementing the method HMMvar is freely available at https://bioinformatics.cs.vt.edu/zhanglab/hmm. © 2014 Liu et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Liu, M., Watson, L. T., & Zhang, L. (2014). Quantitative prediction of the effect of genetic variation using hidden Markov models. BMC Bioinformatics, 15(1). https://doi.org/10.1186/1471-2105-15-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free