Radiotherapy is an important treatment method for cervical cancer, but the efficacy requires improvement. Therefore, novel methods of treatment are required. Previous data have demonstrated that the CXC chemokine ligand 10 (CXCL10) inhibits angiogenesis, induces apoptosis and causes avoidance of the S phase of the cell cycle in cervical cancer cells. The aim of the present study was to evaluate the anti-tumor effect of radiotherapy combined with CXCL10 gene therapy. Mouse models of cervical carcinoma were created by inoculation with HeLa cells, and were treated by combining intravenously administered plasmid-encoding CXCL10, administered 5 times (days 12, 15, 18, 21 and 24 following inoculation), with direct radiation (20 Gy/5 fractions) administered on 5 consecutive days (~day 27 after inoculation). The vessel density and tumor cell proliferation were observed by immunostaining, and apoptosis was determined using a TUNEL assay. The results revealed a significant increase in the inhibition of tumor growth, reduced vessel density, decreased cell proliferation and increased apoptosis in the tumor cells of the combination therapy group. Overall, these findings resulted in the conclusion that CXCL10 gene therapy in combination with radiotherapy is a novel effective therapeutic strategy for cervical cancer.
CITATION STYLE
Zhao, M., Ma, Q., Xu, J., Fu, S., Chen, L., Wang, B., … Yang, L. (2015). Combining cxcl10 gene therapy and radiotherapy improved therapeutic efficacy in cervical cancer hela cell xenograft tumor models. Oncology Letters, 10(2), 768–772. https://doi.org/10.3892/ol.2015.3281
Mendeley helps you to discover research relevant for your work.