DNA mismatch repair initiates 6-thioguanine-induced autophagy through p53 activation in human tumor cells

76Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Purpose: We investigate the roles of DNA mismatch repair (MMR) and p53 in mediating the induction of autophagy in human tumor cells after exposure to 6-thioguanine (6-TG), a chemotherapy drug recognized by MMR. We also examine how activation of autophagy affects apoptosis (type I cell death) after MMR processing of 6-TG. Experimental Design: Using isogenic pairs of MLH1 -/MLH1+ human colorectal cancer cells (HCT116) and MSH2-/MSH2+ human endometrial cancer cells (HEC59), we initially measure activation of autophagy for up to 3 days after 6-TG treatment using LC3, a specific marker of autophagy. We then assess the role of p53 in autophagic signaling of 6-TG MMR processing using both pifithrin-α cotreatment to chemically inhibit p53 transcription and small hairpin RNA inhibition of p53 expression. Finally, we use Atg5 small hairpin RNA inhibition of autophagy to assess the effect on apoptosis after MMR processing of 6-TG. Results: We find that MMR is required for mediating autophagy in response to 6-TG treatment in these human tumor cells. We also show that p53 plays an essential role in signaling from MMR to the autophagic pathway. Finally, our results indicate that 6-TG-induced autophagy inhibits apoptosis after MMR processing of 6-TG. Conclusions: These data suggest a novel function of MMR in mediating autophagy after a chemical (6-TG) DNA mismatch damage through p53 activation. The resulting autophagy inhibits apoptosis after MMR processing of 6-TG. © 2007 American Association for Cancer Research.

Cite

CITATION STYLE

APA

Zeng, X., Yan, T., Schupp, J. E., Seo, Y., & Kinsella, T. J. (2007). DNA mismatch repair initiates 6-thioguanine-induced autophagy through p53 activation in human tumor cells. Clinical Cancer Research, 13(4), 1315–1321. https://doi.org/10.1158/1078-0432.CCR-06-1517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free