Xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4: A promising thermal/environmental barrier coating material for SiCf/SiC ceramic matrix composites

51Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Rare-earth phosphates (REPO4) are regarded as one of the promising thermal/environmental barrier coating (T/EBC) materials for SiCf/SiC ceramic matrix composites (SiC-CMCs) owing to their excellent resistance to water vapor and CaO–MgO–Al2O3–SiO2 (CMAS). Nevertheless, a relatively high thermal conductivity (κ) of the REPO4 becomes the bottleneck for their practical applications. In this work, novel xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4 (HE (7RE1/7)PO4) has been designed and synthesized for the first time to solve this issue. HE (7RE1/7)PO4 with a homogeneous rare-earth element distribution exhibits high thermal stability up to 1750 ℃ and good chemical compatibility with SiO2 up to 1400 ℃. In addition, the thermal expansion coefficient (TEC) of HE (7RE1/7)PO4 (5.96×10−6 ℃−1 from room temperature (RT) to 900 ℃) is close to that of the SiC-CMCs. What is more, the thermal conductivities of HE (7RE1/7)PO4 (from 4.38 W·m−1·K−1 at 100 ℃ to 2.25 W·m−1·K−1 at 1300 ℃) are significantly decreased compared to those of single-component REPO4 with the minimum value ranging from 9.90 to 4.76 W·m−1·K−1. These results suggest that HE (7RE1/7)PO4 has the potential to be applied as the T/EBC materials for the SiC-CMCs in the future.

Cite

CITATION STYLE

APA

Zhang, P., Duan, X., Xie, X., Ding, D., Yang, T., Hou, X., … Wang, E. (2023). Xenotime-type high-entropy (Dy1/7Ho1/7Er1/7Tm1/7Yb1/7Lu1/7Y1/7)PO4: A promising thermal/environmental barrier coating material for SiCf/SiC ceramic matrix composites. Journal of Advanced Ceramics, 12(5), 1033–1045. https://doi.org/10.26599/JAC.2023.9220736

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free