Time series multiple channel convolutional neural network with attention-based long short- term memory for predicting bearing remaining useful life

90Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

This paper proposes two deep learning methods for remaining useful life (RUL) prediction of bearings. The methods have the advantageous end-to-end property that they take raw data as input and generate the predicted RUL directly. They are TSMC-CNN, which stands for the time series multiple channel convolutional neural network, and TSMC-CNN-ALSTM, which stands for the TSMC-CNN integrated with the attention-based long short-term memory (ALSTM) network. The proposed methods divide a time series into multiple channels and take advantage of the convolutional neural network (CNN), the long short-term memory (LSTM) network, and the attention-based mechanism for boosting performance. The CNN performs well for extracting features from data with multiple channels; dividing a time series into multiple channels helps the CNN extract relationship among far-apart data points. The LSTM network is excellent for processing temporal data; the attention-based mechanism allows the LSTM network to focus on different features at different time steps for better prediction accuracy. PRONOSTIA bearing operation datasets are applied to the proposed methods for the purpose of performance evaluation and comparison. The comparison results show that the proposed methods outperform the others in terms of the mean absolute error (MAE) and the root mean squared error (RMSE) of RUL prediction.

Cite

CITATION STYLE

APA

Jiang, J. R., Lee, J. E., & Zeng, Y. M. (2020). Time series multiple channel convolutional neural network with attention-based long short- term memory for predicting bearing remaining useful life. Sensors (Switzerland), 20(1). https://doi.org/10.3390/s20010166

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free