Correlation between permeability and porosity for pervious concrete (PC)

30Citations
Citations of this article
78Readers
Mendeley users who have this article in their library.

Abstract

The aim of this study was to propose a correlation for the hydraulic parameters of pervious concrete (PC). Thus, three aggregates from civil construction waste and one basalt aggregate (reference) were used to produce PC. The ratio c/a (cement: aggregate) 1:3.26 and a w/c ratio of 0.34 were used in all mixtures. Compressive and flexure tensile strength tests were performed to mechanically characterize the mixtures produced, whereas porosity and constant head permeability tests were also carried out to assess the material hydraulic properties. Firstly, the experimental results were compared with the requirements established in international guidelines (ACI 522R-10, NBR 16416 (2015) and VTT-R-080225-13). The results complied with the guidelines indicating it is feasible to produce pervious concretes with the sustainable aggregates used in the study in low structural applications such as walkways. On the other hand, a correlation between permeability and porosity was proposed based on Darcy’s and Bernoulli’s laws. The proposed equation, obtained by means of a non-linear regression, is an exponential equation that characterizes the hydraulic efficiency of the internal channels of the material considering the pores interconnection. The correlation between porosity and permeability was finally validated using results from the literature showing the same trend found in laboratory, and therefore it was demonstrated that the proposed correlation in an efficient tool to predict the hydraulic efficiency of pervious concrete.

Cite

CITATION STYLE

APA

Sandoval, G. F. B., Galobardes, I., Schwantes-Cezario, N., Campos, A., & Toralles, B. M. (2019). Correlation between permeability and porosity for pervious concrete (PC). DYNA (Colombia), 86(209), 151–159. https://doi.org/10.15446/dyna.v86n209.77613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free