Effect of the process parameters on the adhesive strength of dissimilar polymers obtained by multicomponent injection molding

14Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The growing demand in the consumer market for products with sustainable technologies has motivated new applications using overmolded natural fiber composites. Therefore, studies have been conducted mainly to understand the adhesive properties of overmolded parts. In the present study, a polypropylene (PP) composite with 30% coconut fibers without additives was developed with the aid of a corotating twin screw extruder. Subsequently, a multicomponent injection mold was developed based on the geometry of the ISO 527 type I specimen, in which samples overmolded with PP and PP–coconut-fiber composite, with the overlap in the central area, were obtained to evaluate the adhesive strength of dissimilar materials. The objective of this study was to evaluate the bond between PP and PP–coconut-fiber composite under different processing conditions using an adhesive strength testing device to perform a pure shear analysis. The experimental conditions followed a statistical design considering four factors in two levels and a significance level of 5%. The results indicated that adhesive strength increased significantly as the overlap area increased. It was observed that temperature and injection flow rate were the factors that most contributed to strengthening the bonds of dissimilar materials.

Cite

CITATION STYLE

APA

Pisanu, L., Santiago, L. C., Barbosa, J. D. V., Beal, V. E., & Nascimento, M. L. F. (2021). Effect of the process parameters on the adhesive strength of dissimilar polymers obtained by multicomponent injection molding. Polymers, 13(7). https://doi.org/10.3390/polym13071039

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free