Developmental role for endocannabinoid signaling in regulating glucose metabolism and growth

14Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Treatment of ob/ob (obese) mice with a cannabinoid receptor 1 (Cnr1) antagonist reduces food intake, suggesting a role for endocannabinoid signaling in leptin action. We further evaluated the role of endocannabinoid signaling by analyzing the phenotype of Cnr1 knockout ob/ob mice. Double mutant animals show a more severe growth retardation than ob/ob mice with similar levels of adiposity and reduced IGF-I levels without alterations of growth hormone (GH) levels. The double mutant mice are also significantly more glucose intolerant than ob/ob mice. This is in contrast to treatment of ob/ob mice with a Cnr1 antagonist that had no effect on glucose metabolism, suggesting a possible requirement for endocannabinoid signaling during development for normal glucose homeostasis. Double mutant animals also showed similar leptin sensitivity as ob/ob mice, suggesting that there are developmental changes that compensate for the loss of Cnr1 signaling. These data establish a role for Cnr1 during development and suggest that compensatory changes during development may mitigate the requirement for Cnr1 in mediating the effects of leptin. The data also suggest a developmental role for Cnr1 to promote growth, regulate the GH/IGF-I axis, and improve β-cell function and glucose homeostasis in the setting of leptin deficiency. © 2013 by the American Diabetes Association.

Cite

CITATION STYLE

APA

Li, Z., Schmidt, S. F., & Friedman, J. M. (2013). Developmental role for endocannabinoid signaling in regulating glucose metabolism and growth. Diabetes, 62(7), 2359–2367. https://doi.org/10.2337/db12-0901

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free