Graphical models for extremes

82Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Conditional independence, graphical models and sparsity are key notions for parsimonious statistical models and for understanding the structural relationships in the data. The theory of multivariate and spatial extremes describes the risk of rare events through asymptotically justified limit models such as max-stable and multivariate Pareto distributions. Statistical modelling in this field has been limited to moderate dimensions so far, partly owing to complicated likelihoods and a lack of understanding of the underlying probabilistic structures. We introduce a general theory of conditional independence for multivariate Pareto distributions that enables the definition of graphical models and sparsity for extremes. A Hammersley–Clifford theorem links this new notion to the factorization of densities of extreme value models on graphs. For the popular class of Hüsler–Reiss distributions we show that, similarly to the Gaussian case, the sparsity pattern of a general extremal graphical model can be read off from suitable inverse covariance matrices. New parametric models can be built in a modular way and statistical inference can be simplified to lower dimensional marginals. We discuss learning of minimum spanning trees and model selection for extremal graph structures, and we illustrate their use with an application to flood risk assessment on the Danube river.

Cite

CITATION STYLE

APA

Engelke, S., & Hitz, A. S. (2020). Graphical models for extremes. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 82(4), 871–932. https://doi.org/10.1111/rssb.12355

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free