Abstract
We consider a continuum percolation model consisting of two types of nodes, namely legitimate and eavesdropper nodes, distributed according to independent Poisson point processes in R2 of intensities λ and λE, respectively. A directed edge from one legitimate node A to another legitimate node B exists provided that the strength of the signal transmitted from node A that is received at node B is higher than that received at any eavesdropper node. The strength of the signal received at a node from a legitimate node depends not only on the distance between these nodes, but also on the location of the other legitimate nodes and an interference suppression parameter γ . The graph is said to percolate when there exists an infinitely connected component. We show that for any finite intensity λE of eavesdropper nodes, there exists a critical intensity λc < ∞ such that for all λ > λc the graph percolates for sufficiently small values of the interference parameter. Furthermore, for the subcritical regime, we show that there exists a λ0 such that for all λ < λ0 ≤ λc a suitable graph defined over eavesdropper node connections percolates that precludes percolation in the graphs formed by the legitimate nodes.
Author supplied keywords
Cite
CITATION STYLE
Vaze, R., & Iyer, S. (2014). Percolation on the information theoretically secure signal to interference ratio graph. Journal of Applied Probability, 51(4), 910–920. https://doi.org/10.1239/jap/1421763317
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.