Abstract
We show that the count-based Script Induction models of Chambers and Jurafsky (2008) and Jans et al. (2012) can be unified in a general framework of narrative chain likelihood maximization. We provide efficient algorithms based on Association Rule Mining (ARM) and weighted set cover that can discover interesting patterns in the training data and combine them in a reliable and explainable way to predict the missing event. The proposed method, unlike the prior work, does not assume full conditional independence and makes use of higher-order count statistics. We perform the ablation study and conclude that the inductive biases introduced by ARM are conducive to better performance on the narrative cloze test.
Cite
CITATION STYLE
Belyy, A., & van Durme, B. (2020). Script induction as association rule mining. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (pp. 55–62). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2020.nuse-1.7
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.