Mining-induced surface subsidence causes a series of environmental hazards and social problems, including farmland destruction, waterlogging and building damage in the subsidence area. To reduce mining damages, an innovative method of controlling the surface movement scope via artificial weak planes generated by hydraulic fracturing technology was proposed in this paper. Numerical models were built to analyze the influence of weak planes with different heights and dips on the overlying strata movement. The numerical simulation results showed that the weak planes structure cut off the development of the overlying strata displacement to the surface and affected the surface movement scope. When the weak planes’ dips were bigger than the angle of critical deformation, with the increase of the weak planes’ heights (0–120 m) the advance angle of influence changed from 53.61◦ to 59.15◦, and the advance distance of influence changed from 173.31 m to 140.27 m which decreased by 30.04 m. In applications at Sihe coal mine in China, directional hydraulic fracturing technology was used in panel 5304 to form artificial weak planes in overlying strata. The measured surface subsidence and deformation value met the numerical simulation results and the mining-induced surface movement scope reduced. Moreover, no damage occurred to the surface buildings which were predicted to be in the affected area after extraction. This technology provided a new method to protect the surface structures from damages and had great benefits for the sustainable development of coal mines.
CITATION STYLE
Feng, Z., Guo, W., Xu, F., Yang, D., & Yang, W. (2019). Control technology of surface movement scope with directional hydraulic fracturing technology in longwall mining: A case study. Energies, 12(18). https://doi.org/10.3390/en12183480
Mendeley helps you to discover research relevant for your work.