Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition

117Citations
Citations of this article
435Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Titanium dioxide has been widely studied for its ability to photocatalytic and applications have high performance for photovoltaic applications. In this paper TiO2 nanoparticle was investigated for the degradation of methylene blue under UV light in various pH condition. The TiO2 nanoparticle was characterized by SEM and XRD. The results showed that TiO2 nanoparticle has the structure of anatase and have a particle size of 27 nm. The photocatalytic activity of TiO2 nanoparticle show that the degradation of methylene blue under UV light have dye removal of 97% dye was degraded in 3 h, but the degradation of methylene blue without UV light have dye removal of 15% dye was degraded in 3 h. It indicated that The photocatalytic activity of TiO2 nanoparticle could occur if there the UV light. If not UV light the photocatalytic activity cannot occurs, the degradation of Methylene Blue 15% is not a photocatalytic activity but it is adsorption of Methylene Blue by TiO2 nanoparticle. The photocatalytic activity of TiO2 nanoparticle has pH-sensitive. The photocatalytic activity of TiO2 nanoparticle in acid condition (pH 4.1) is 40%, in neutral condition (pH 7.0) is 90%, and in base condition (pH 9.7) is 97%. The highest photocatalytic activity occurs in base condition, it causes in base condition OH- can be direct reaction with a hole to produce hydroxyl radical (OH∗).

Author supplied keywords

Cite

CITATION STYLE

APA

Nasikhudin, Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2018). Study on Photocatalytic Properties of TiO2 Nanoparticle in various pH condition. In Journal of Physics: Conference Series (Vol. 1011). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1011/1/012069

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free