Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection

15Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

This paper presents an optical fiber gas sensor based on sandwiched long-period fiber grating (SLPFG) that is fabricated via the microelectromechanical systems (MEMS) process and coated with amino silica adsorbent for carbon dioxide (CO2) gas sensing. The amine-modified nanoporous silica foams were coated onto the SLPFG for CO2 adsorption. To characterize the CO2 adsorption of the SLPFG sensor, a gas sensing test was conducted with a mixed gas consisting of 15% CO2 and 85% nitrogen at a flow rate of 0.2 L/min. The results showed that the spectra of the SLPFG were varied with the gas flow within 21 min. After that, the transmission spectra of the SLPFG held steady and exhibited no further change. This phenomenon was caused by the adsorption saturation of the amine-modified nanoporous silica foams which were coated onto the SLPFG. During the absorption process, the transmission was increasing by about 11.27 dB (from -23.11 to -11.84 dB), and the increasing rate of transmission was 0.4598 dB/min. Repeatable adsorption and desorption experiment results showed that the SLPFG CO2 gas sensor exhibited good repeatability and a short response time. The recovery rate for each cycle was about 85%, and the required recovery time was short. Therefore, elaborated SLPFG gas sensor could potentially be used as a gas sensor for monitoring CO2 adsorption in the context of various industrial, agricultural, and household applications.

Cite

CITATION STYLE

APA

Wu, C. W., & Chiang, C. C. (2016). Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection. Micromachines, 7(3). https://doi.org/10.3390/mi7030035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free