Evaluating the effect of window-to-wall ratios on cooling-energy demand on a typical summer day

18Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

The window-to-wall ratio (WWR) significantly affects the indoor thermal environment, causing changes in buildings’ energy demands. This research couples the “Envi-met” model and the “TRNSYS” model to predict the impact of the window-to-wall ratio on indoor cooling energy demands in south Hunan. With the coupled model, “Envi-met + TRNSYS”, fixed meteorological parameters around the exterior walls are replaced by varied data provided by Envi-met. This makes TRNSYS predictions more accurate. Six window-to-wall ratios are considered in this research, and in each scenario, the electricity demand for cooling is predicted using “Envi-met + TRNSYS”. Based on the classification of thermal perception in south Hunan, the TRNSYS predictions of the electricity demand start with 30◦C as the threshold of refrigeration. The analytical results reveal that in a 6-storey residential building with 24 households, in order to maintain the air temperature below 30◦C, the electricity required for cooling buildings with 0% WWR, 20% WWR, 40% WWR, 60% WWR, 80% WWR, and 100% WWR are respectively 0 KW·h, 19.6 KW·h, 133.7 KW·h, 273.1 KW·h, 374.5 KW·h, and 461.9 KW·h. This method considers the influence of microclimate on the exterior wall and improves the accuracy of TRNSYS in predicting the energy demand for indoor cooling.

Cite

CITATION STYLE

APA

Li, J., Zheng, B., Bedra, K. B., Li, Z., & Chen, X. (2021). Evaluating the effect of window-to-wall ratios on cooling-energy demand on a typical summer day. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168411

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free