Power distribution systems nowadays are highly penetrated by renewable energy sources, and this explains the dominant role of power electronic converters in their operation. However, the presence of multiple power electronic conversion units gives rise to the so-called phenomenon of Constant Power Loads (CPLs), which poses a serious stability challenge in the overall operation of a DC micro-grid. This article addresses the problem of enhancing the stability margin of boost and buck-boost DC-DC converters employed in DC micro-grids under uncertain mixed load conditions. This is done with a recently proposed methodology that relies on a two-degree-of-freedom (2-DOF) controller, comprised by a voltage-mode Proportional Integral Derivative (PID) (Type-III) primary controller and a reference governor (RG) secondary controller. This complementary scheme adjusts the imposed voltage reference dynamically and is designed in an optimal fashion via the Model Predictive Control (MPC) methodology based on a specialized composite (current and power) estimator. The outcome is a robust linear MPC controller in an explicit form that is shown to possess interesting robustness properties in a wide operating range and under various disturbances and mixed load conditions. The robustness and performance of the proposed controller/observer pair under steady-state, line, and mixed load variations is validated through extensive Matlab/Simulink simulations.
CITATION STYLE
Yfoulis, C., Papadopoulou, S., & Voutetakis, S. (2020). Robust linear control of boost and buck-boost DC-DC converters in micro-grids with constant power loads. Energies, 13(18). https://doi.org/10.3390/en13184829
Mendeley helps you to discover research relevant for your work.