Abstract
MXene, an advanced family of 2D ceramic material resembling graphene, has had a considerable impact on the field of research because of its unique physiochemical properties. MXene has been synthesized by the selective etching of MAX via different techniques. However, with the passage of time, due to the need for further progress and improvement in MXene materials, ideas have turned toward composite fabrication, which has aided boosting the MXene composites regarding their properties and applications in various areas. Many review papers are published on MXene and their composites with polymer, carbon nanotube, graphene, other carbon, metal oxides and sulfides, etc., except metal composite, and such papers discuss these composites thoroughly. In this review article, we illustrate and explain the development of MXene-based metal composites. Furthermore, we highlight the synthesis techniques utilized for the preparation of MXene composites with metal. We briefly discuss the enhancement of properties of the composites and a wide range of applications as an electrode substance for energy storage devices, electrochemical cells, supercapacitors, and catalytic and anti-corrosive performance. Major obstacles in MXene and metal composite are mentioned and provide future recommendations. Together, they can overcome problems and enable MXene and composites on commercial-scale production.
Author supplied keywords
Cite
CITATION STYLE
Khan, M. U., Du, L., Fu, S., Wan, D., Bao, Y., Feng, Q., … Hu, C. (2022, April 1). Preparations and Applications of MXene–Metal Composites: A Review. Coatings. MDPI. https://doi.org/10.3390/coatings12040516
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.