Real-time PCR method for the rapid detection and quantification of pathogenic staphylococcus species based on novel molecular target genes

22Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

Abstract

Coagulase-positive Staphylococcus aureus is a foodborne pathogen considered one of the causes of food-related disease outbreaks. Like S. aureus, Staphylococcus capitis, Staphylococcus caprae, and S. epidermidis are opportunistic pathogens causing clinical infections and food contamination. The objective of our study was to develop a rapid, accurate, and monitoring technique to detect four Staphylococcus species in food. Four novel molecular targets (GntR family transcriptional regulator for S. aureus, phosphomannomutase for S. epidermidis, FAD-dependent urate hydroxylase for S. capitis, and Gram-positive signal peptide protein for S. caprae) were mined based on pan-genome analysis. Primers targeting molecular target genes showed 100% specificity for 100 non-target reference strains. The detection limit in pure cultures and artificially contaminated food samples was 102 colony-forming unit/mL for S. aureus, S. capitis, S. caprae, and S. epidermidis. Moreover, real-time polymerase chain reaction successfully detected strains isolated from various food matrices. Thus, our method allows an accurate and rapid monitoring of Staphylococcus species and may help control staphylococcal contamination of food.

Cite

CITATION STYLE

APA

Kim, E., Yang, S. M., Won, J. E., Kim, D. Y., Kim, D. S., & Kim, H. Y. (2021). Real-time PCR method for the rapid detection and quantification of pathogenic staphylococcus species based on novel molecular target genes. Foods, 10(11). https://doi.org/10.3390/foods10112839

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free