The simultaneous wireless information and power transfer (SWIPT) technique has been considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD) bidirectional wireless sensor network (BWSN) with SWIPT is investigated. Based on minimum total mean-square-error (total-MSE) criterion, a joint optimization problem for source and relay beamforming and source receiving subject to transmitting power and harvesting energy constraints is established. Since this problem is non-convex, an iterative algorithm based on feasible point pursuit-successive convex approximation (FPP-SCA) is derived to obtain a local optimum. Moreover, considering the scenarios in which source and relay nodes equipped with the same and different numbers of antennas, a low-complexity diagonalizing design-based scheme is employed to simplify each non-convex subproblem into convex problems and to reduce the computational complexity. Numerical results of the total-MSE and bit error rate (BER) are implemented to demonstrate the performance of the two different schemes.
CITATION STYLE
Liu, D., Wen, Z., Liu, X., Li, S., & Zou, J. (2019). Joint source-relay optimization for MIMO full-duplex bidirectional wireless sensor networks with SWIPT. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081827
Mendeley helps you to discover research relevant for your work.