Abstract
In this work, a novel and very interesting analytical methodology based on coupling of digital image processing and three-way calibration has been developed for determination of nitrite in food samples. Nitrite in contact with Griess reagent is able to produce a red-colored azo dye whose color intensity is correlated with nitrite concentration and here, a piece of Whatman filter paper impregnated with Griess reagent was used as the platform of the sensor and a SONY Xperia Z5 cell phone was used for image capturing from the sensor surface. To generate second-order data, the F-number of the camera's sensor was changed as an instrumental parameter. Two calibration models were constructed by unfolded partial least squares-residual bilinearization (U-PLS/RBL) and multiway-PLS/RBL (N-PLS/RBL) and then, their performance for prediction of nitrite concentration in test samples was evaluated and the results confirmed a good performance for U-PLS/RBL (REP = 3.25 ppm, RMSEP = 8.82 ppm, RMSEC = 4.62 ppm, Q2 = 0.99, γ-1 = 0.05 and LOD = 0.1 ppm) which was better than that for N-PLS/RBL (REP = 13.98 ppm, RMSEP = 37.86 ppm, RMSEC = 6.46 ppm, Q2 = 0.98, γ-1 = 0.07 and LOD = 0.15 ppm) in predicting concentration of nitrite in test samples which motivated us to choose it for the analysis of cabbage, carrot, lettuce, watermelon, onion, potato, kielbasa and sausage as real samples.
Cite
CITATION STYLE
Almasvandi, Z., Vahidinia, A., Heshmati, A., Zangeneh, M. M., Goicoechea, H. C., & Jalalvand, A. R. (2020). Coupling of digital image processing and three-way calibration to assist a paper-based sensor for determination of nitrite in food samples. RSC Advances, 10(24), 14422–14430. https://doi.org/10.1039/c9ra10918h
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.